Prediction and Biochemical Demonstration of a Catabolic Pathway for the Osmoprotectant Proline Betaine

نویسندگان

  • Ritesh Kumar
  • Suwen Zhao
  • Matthew W. Vetting
  • B. McKay Wood
  • Ayano Sakai
  • Kyuil Cho
  • José Solbiati
  • Steven C. Almo
  • Jonathan V. Sweedler
  • Matthew P. Jacobson
  • John A. Gerlt
  • John E. Cronan
چکیده

UNLABELLED Through the use of genetic, enzymatic, metabolomic, and structural analyses, we have discovered the catabolic pathway for proline betaine, an osmoprotectant, in Paracoccus denitrificans and Rhodobacter sphaeroides. Genetic and enzymatic analyses showed that several of the key enzymes of the hydroxyproline betaine degradation pathway also function in proline betaine degradation. Metabolomic analyses detected each of the metabolic intermediates of the pathway. The proline betaine catabolic pathway was repressed by osmotic stress and cold stress, and a regulatory transcription factor was identified. We also report crystal structure complexes of the P. denitrificans HpbD hydroxyproline betaine epimerase/proline betaine racemase with l-proline betaine and cis-hydroxyproline betaine. IMPORTANCE At least half of the extant protein annotations are incorrect, and the errors propagate as the number of genome sequences increases exponentially. A large-scale, multidisciplinary sequence- and structure-based strategy for functional assignment of bacterial enzymes of unknown function has demonstrated the pathway for catabolism of the osmoprotectant proline betaine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance.

In common with other zwitterionic quarternary ammonium compounds (QACs), glycine betaine acts as an osmoprotectant in plants, bacteria, and animals, with its accumulation in the cytoplasm reducing adverse effects of salinity and drought. For this reason, the glycine betaine biosynthesis pathway has become a target for genetic engineering of stress tolerance in crop plants. Besides glycine betai...

متن کامل

Factors reducing and promoting the effectiveness of proline as an osmoprotectant in Escherichia coli K12.

Proline accumulation in Escherichia coli is mediated by three proline porters. Proline catabolism is effected by proline porter I (PPI) and proline/delta 1-pyrroline carboxylate dehydrogenase. Proline did not accumulate cytoplasmically when E. coli was subjected to osmotic stress in minimal salts medium. Although PPI is induced when proline is provided as carbon or nitrogen source, its activity...

متن کامل

Characterization of the Osmoprotectant Transporter OpuC from Pseudomonas syringae and Demonstration that Cystathionine- -Synthase Domains Are Required for Its Osmoregulatory Function †

The plant pathogen Pseudomonas syringae may cope with osmotic stress on plants, in part, by importing osmoprotective compounds. In this study, we found that P. syringae pv. tomato strain DC3000 was distinct from most bacterial species in deriving greater osmoprotection from exogenous choline than from glycine betaine. This superior osmoprotection was correlated with a higher capacity for uptake...

متن کامل

Glycine betaine transport in the obligate halophilic archaeon Methanohalophilus portucalensis.

Transport of the osmoprotectant glycine betaine was investigated using the glycine betaine-synthesizing microbe Methanohalophilus portucalensis (strain FDF1), since solute uptake for this class of obligate halophilic methanogenic Archaea has not been examined. Betaine uptake followed a Michaelis-Menten relationship, with an observed K(t) of 23 microM and a V(max) of 8 nmol per min per mg of pro...

متن کامل

Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-beta-synthase domains are required for its osmoregulatory function.

The plant pathogen Pseudomonas syringae may cope with osmotic stress on plants, in part, by importing osmoprotective compounds. In this study, we found that P. syringae pv. tomato strain DC3000 was distinct from most bacterial species in deriving greater osmoprotection from exogenous choline than from glycine betaine. This superior osmoprotection was correlated with a higher capacity for uptake...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014